If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-16y+64=32
We move all terms to the left:
2y^2-16y+64-(32)=0
We add all the numbers together, and all the variables
2y^2-16y+32=0
a = 2; b = -16; c = +32;
Δ = b2-4ac
Δ = -162-4·2·32
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$y=\frac{-b}{2a}=\frac{16}{4}=4$
| 7p-4=52 | | 4x+3=58 | | 2y-1=5y19 | | 2y^2-16y+64=16 | | x+15-2x-12=x10 | | 18+t=2t/10 | | (q-4)×4=32 | | -63/y=7 | | 3x^2-35=40 | | 75+5x4-70=25 | | 4x–7=35 | | 15-x-28=-38 | | 8z2=14 | | -65=w/9-69 | | 3xx5=158 | | 4-6b-4-7b²= | | (3a)(3a)(3a)(3a)=3⁴a⁴ | | -16=2(4x-4) | | ‘x’3x+4=22 | | 26-6x=6-8x | | 2x-4=2(2x+4) | | 6s+17=71 | | 5+3+2x=14 | | -3x-19=-2x-24 | | -3x-34=4(3x-1) | | 3(3x-5)-2=19 | | -2x+18=2x+26 | | X3x+4=22 | | -x+33=5(3x-3) | | 3(2x+4)=5x+5 | | 4(2x-2)+3=2x-35 | | 32=2(4x+4)+8 |